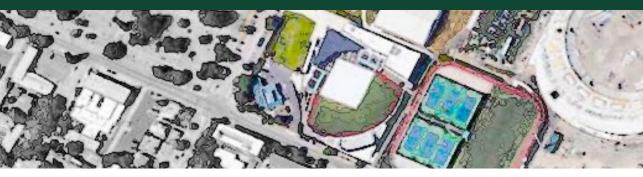
Thermal Systems Taskforce Campus Public Forum

Brian Fox, *AVP Budget, Financial Analysis and Data Analytics* Steve Mital, *Director of Energy and Sustainability*


Winter 2024 Project Update

- Overview of Process and Timeline
- Overview of Options
- NEW Climate Protection Plan Update
- NEW Project Option Costs, Campus Impacts, and Estimated Emissions Reductions
- NEW Initial/Draft Taskforce Recommendations & Discussion
- Facilitated Q&A
- Table Discussions

Thermal Taskforce Work to Date & Process Forward

Thermal Systems Taskforce

- Taskforce Membership: Board members, faculty, students, staff
- Taskforce Charter:
 - **REVIEW technical reports**, energy markets/regulations and complete due diligence on a potential thermal system transition
 - ENGAGE the campus community on available options and incorporate feedback
 - **RECOMMEND to the president** a long-term plan to support the recapitalization of the UO's campus heating infrastructure, balancing the following goals:
 - reduction of greenhouse gas emissions,
 - resiliency of campus heat production to energy markets and natural hazards,
 - limited disruption to student's campus experience, and
 - appropriate fiscal stewardship.

Thermal Systems Taskforce Timeline

Fall 2022	- Taskforce review phase I heating study, UO emissions, set workplan - Commission phase II technical analysis
Winter 2023	- Taskforce review existing infrastructure, regulatory and market issues
Spring 2023	 Initial Community outreach and campus forums Taskforce reviews campus feedback
Summer 2023	 Analyze input costs, develop carbon intensity factors, and existing regulatory environment Work closely with consulting engineers to develop life cycle cost analysis (LCCA)
Fall 2023	 Begin Fall Term engagement with campus community Complete emissions reduction estimates, financial analysis and due diligence process
Winter 2024	 Receive Concept Design for water-based distribution system (1/5/2024) Review engineering and LCCA findings, develop initial recommendation Present findings and initial recommendation to campus community Review campus input and finalize recommendation(s) to President Submit report to President and present to Board of Trustees

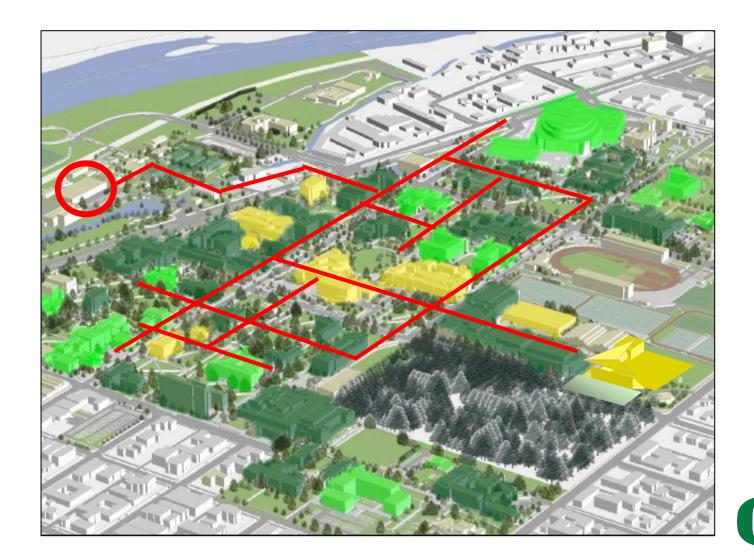
Regulatory Updates Climate Protection Program

Oregon's Climate Protection Program

- Formally adopted in 2021
- Required natural gas providers to reduce emissions over the next 30 years
 - 50% by 2035
 - 90% by 2050
- Was successfully challenged in Oregon State Court of Appeals in December 2023.
 - The court decided that DEQ did not fully comply with notice requirements during the rulemaking process, thereby invalidating the final rules and the program.
- On January 22, 2024 DEQ announced it would not appeal.
 - DEQ plans to resolve the issue by re-launching the rule-making process.
 - Expected to take 12 months

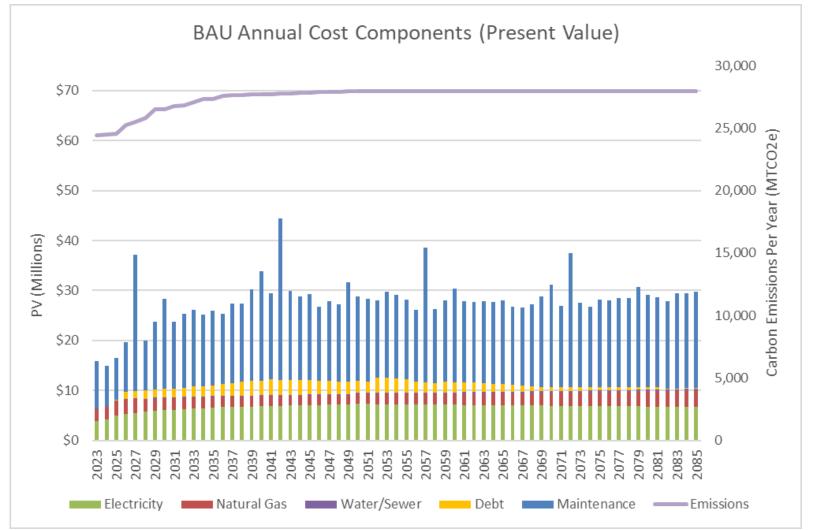
Oregon's Climate Protection Program

- UO conducted analysis of CPP cost, technical feasibility, and impact on emissions reductions.
- UO removed CPP from consideration until its legality is resolved.
- UO established "Business As Usual" (current operations) as the baseline to which emissions reduction options are compared.
- UO will continue to monitor CPP and all federal, state, and local regulatory and policy developments.


Heating System Options

Existing System Structure Options and Impacts

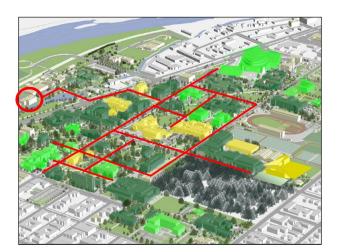
UO's Existing Steam District Heating System

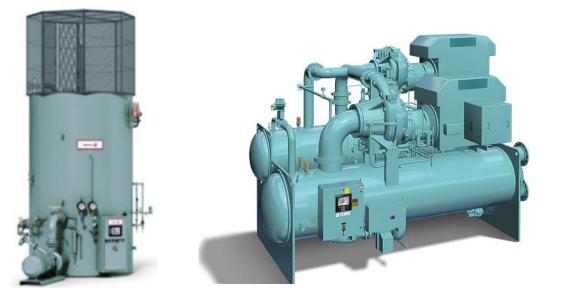


UO District Heating System - BAU

OF

Business as Usual (BAU) Estimated Cost & Emissions





Thermal System Options Analyzed

(1): SYSTEMS AS USUAL

(3): HEAT RECOVERY CHILLER (HRC)

(2): ELECTRODE BOILER

(4): GEO-EXCHANGE + HRC

Overview of Options 2A and 2B – Electrode Boilers

Overview:

- Use electricity to make steam in place of existing natural gas boilers.
- Pairs with existing steam heat distribution system
- Estimated annual emissions reduction from BAU in 2028: 2A 78% | 2B 45%
- Estimated cumulative emissions reduction from BAU in 2028: 2A 53% | 2B 35%

Pros:

- Fastest and simplest (non-disruptive) change. Integrate directly with existing system.
- 2A electrifies 95% of heating. Requires electrical infrastructure improvements/investments.
- 2B electrifies 54% of heating. Fits within existing electrical and space constraints.
- Immediate emissions reductions upon implementation

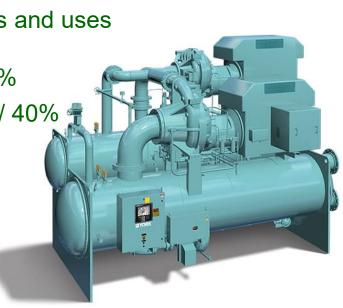
Cons:

- Older/less efficient technology and potential stranded asset (2A)
- 2A boiler increases utility cost by \$8.1 million per year in 2028
- 2B boiler increases utility cost by \$4.4 million per year in 2028

Scenario	Capital Cost (2023 dollars)
18 MW Electrode Steam Boiler (Option 2A)	\$29.7M
8 MW Electrode Steam Boiler (Option 2B)	\$14.9M

Overview of Option 3 – Heat Pump Chiller

Overview:

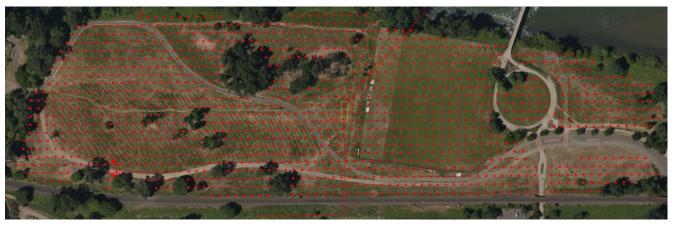

- Captures heat that would've been vented to atmosphere via cooling towers and uses it to meet heating needs
- Estimated annual emissions reduction from BAU in 2028 / 2043: 26% / 56%
- Estimated cumulative emissions reduction from BAU in 2028 / 2043: 10% / 40%

Pros:

- Reduces emissions by electrifying 58% of heating
- Extremely efficient use of energy and reduced maintenance reduces annual operating cost below BAU
- Estimated to receive \$3.4M from IRA

Cons:

- Requires replacement of steam distribution system with hot water system and building system upgrades
- Emissions reductions phased in gradually over 12+ years while system is built
- Is less effective meeting wintertime heating needs



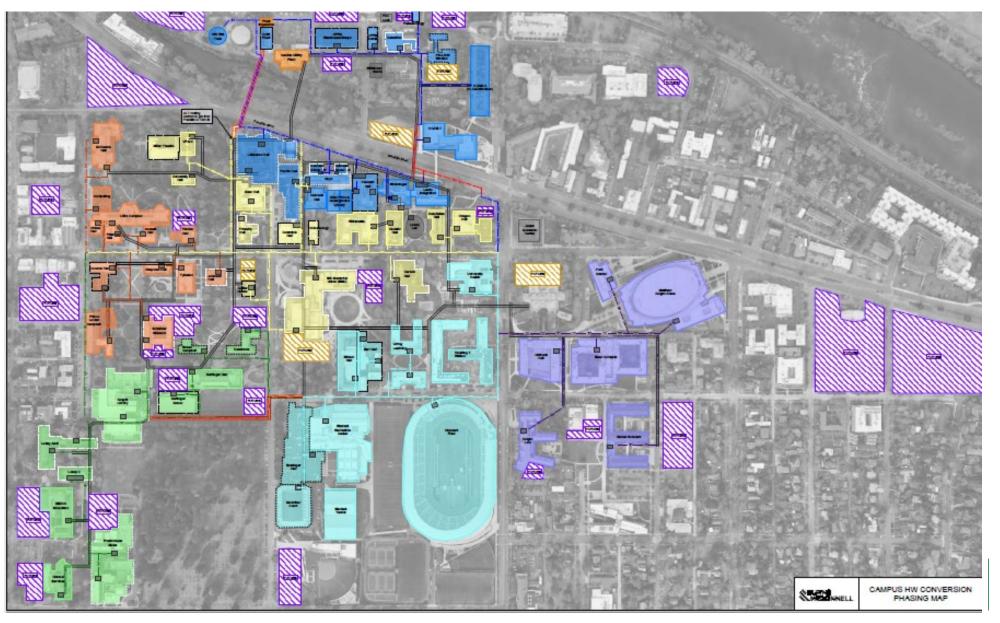
NIVERSITY OF

Overview of Option 4 – Geo-Exchange

Overview:

- Adds to HRC (Option 3)
- Requires ~1,400 boreholes (600 ft deep)
- Estimated annual emissions reduction
 from BAU in 2028 / 2043: 29% / 76%
- Estimated cumulative emissions reduction from BAU in 2028 / 2043: 11% / 54%

Pros:

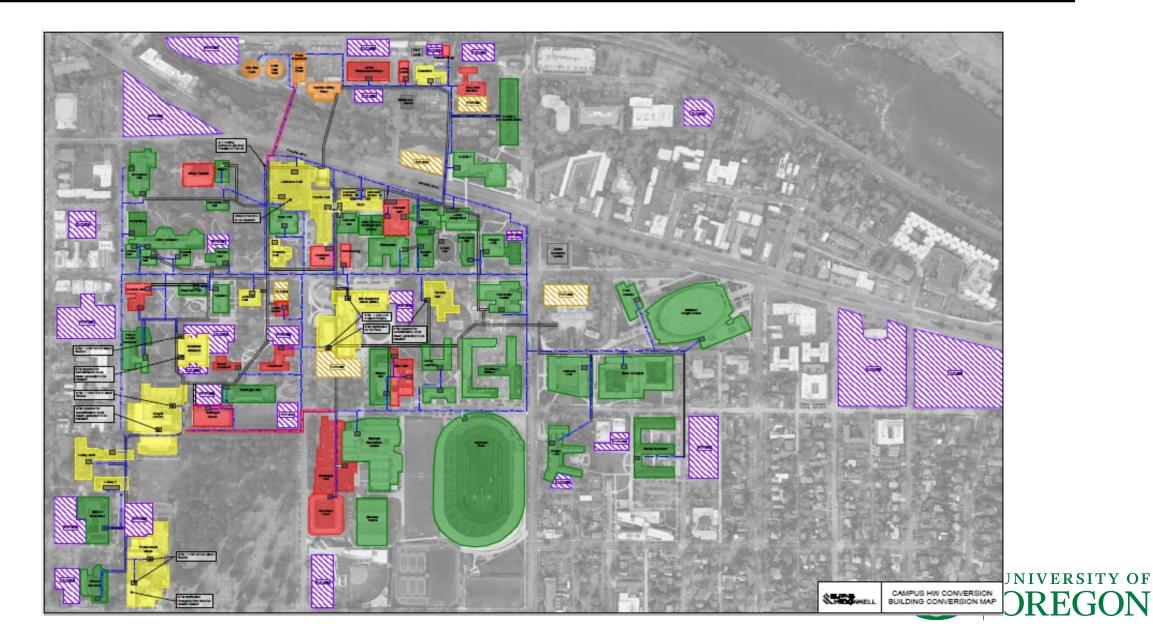

- Reduces emissions by electrifying 86% of heating
- Extremely efficient use of energy and reduced maintenance costs means annual operating cost below BAU (after debt service)
- Estimated to receive \$27.2M from IRA and as much as \$138.9

Cons:

- Requires replacement of steam distribution system with hot water system and building system upgrades
- Emissions reductions phased in gradually over 12+ years while system is built

Options 3 / 4 Require Steam to Hot Water Conversion

Hot Water Distribution System


 Distribution system transports hot water from the plant to the buildings for heating and back

Phase	2023 Cost	Notes
Initial	\$43,400,000	Costs shown here are the estimated
1	\$60,600,000	costs in 2023 dollars.
2	\$57,200,000	
3	\$21,600,000	The amounts include direct
4	\$40,400,000	construction, design, and associated project costs.
5	\$31,700,000	
6	\$31,100,000	The costs shown do not include
Total	\$286,000,000	financing costs or estimated escalation to year of construction.

- Only needed for options 3 and 4. System Design:
 - Direct bury
 - Loop design to have multiple pathways into buildings for increased resilience
- Significant campus disruption anticipated with potential impact to historic trees

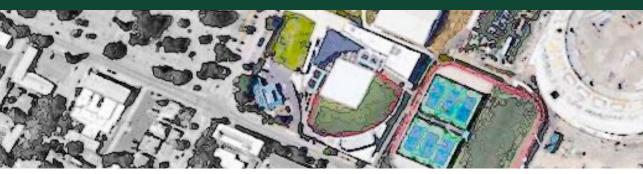
Options 3 / 4 Require Building Hot Water Conversions

Building Conversions

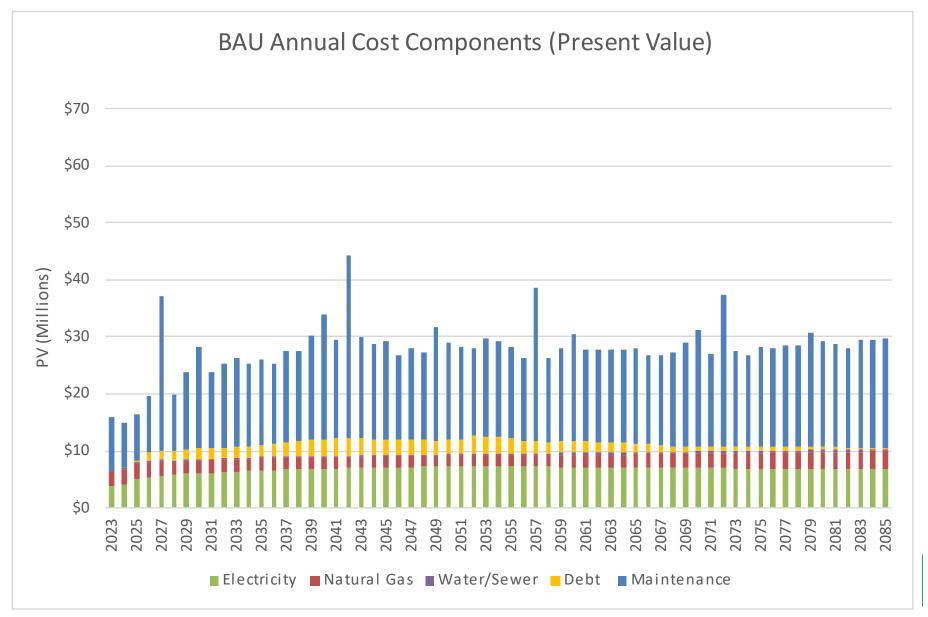
- All buildings currently receive steam for heating and need to be converted from using steam from the central plant to hot water. Only applies to options 3 and 4
- Buildings divided between full steam distribution, partial steam distribution, full hydronics, and hot water temperature
- Included cost for displaced use (21 buildings requiring staff/program relocation, \$55M)
- Included cost for rental boiler (2 small boilers throughout transition)

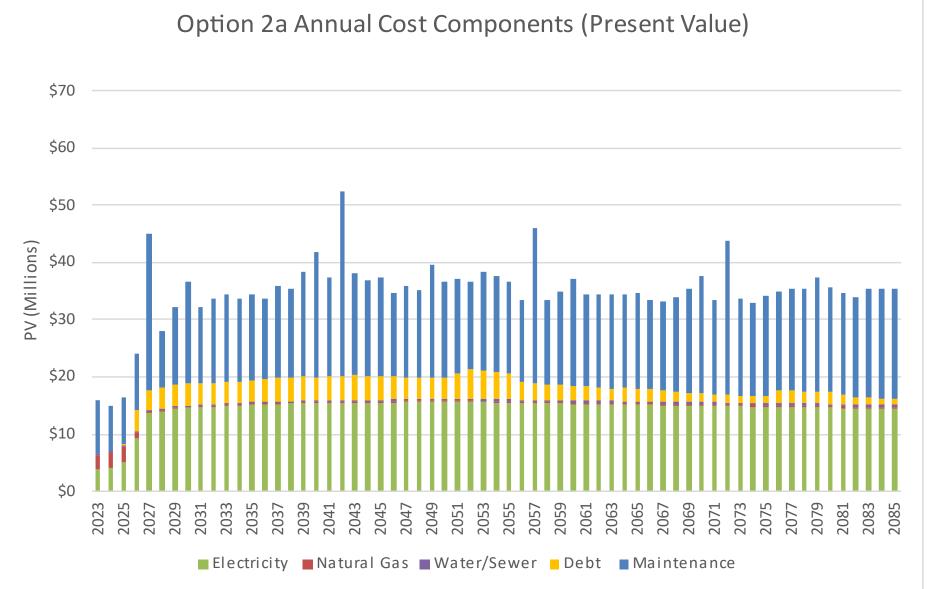
Phase	2023 Cost	Notes			
1	\$72,600,000	Costs shown here are the estimated costs in 2023			
2	\$45,400,000	dollars.			
3	\$39,500,000	The amounts include direct construction, design,			
4	\$67,000,000	and associated project costs.			
5	\$44,600,000				
6	\$27,800,000	The amounts do not include financing costs or			
Total	\$296,900,000	estimated escalation to year of construction.			

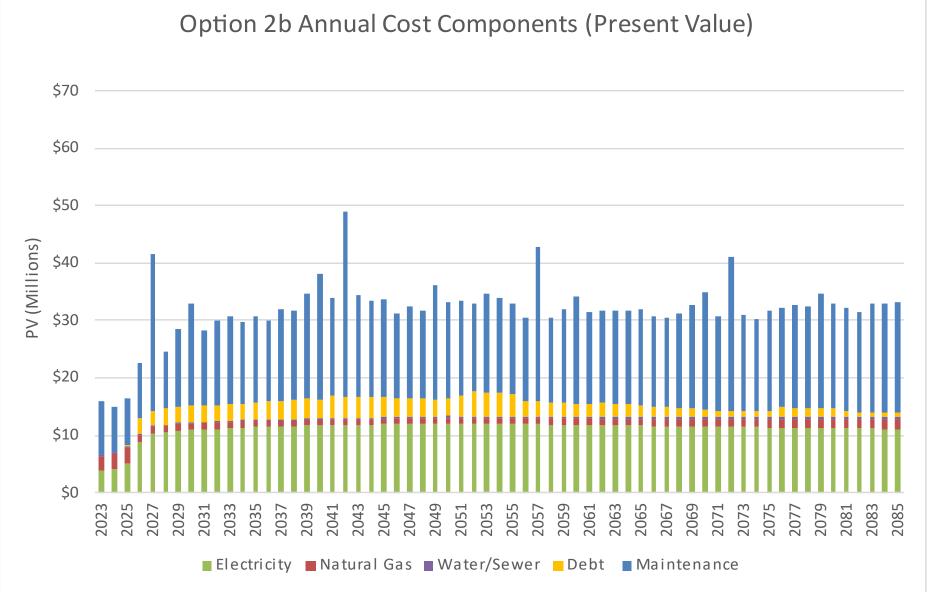
Total Construction Costs

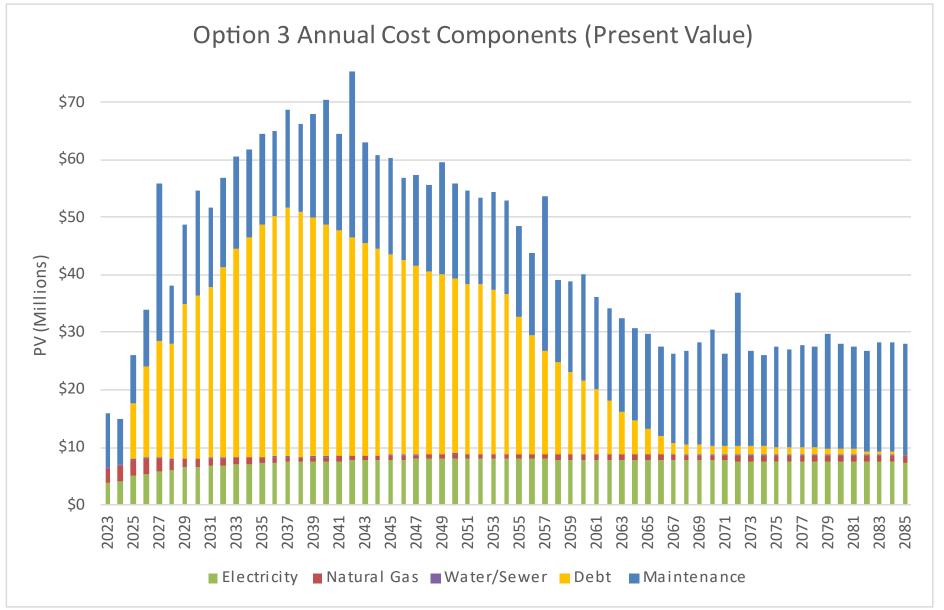

Estimated Project Costs (2023\$)	Option 2a (18MW Ele Blr)	Option 2b (8MW Ele Blr)	Option 3 (HPC)	Option 4 (Geo)
Electrode Boiler and Electrical Modifications	\$29,700,000	\$14,900,000	\$0	\$0
Hot Water Distribution	\$0	\$0	\$286,000,000	\$286,000,000
Hot Water Building Conversions	\$0	\$0	\$296,900,000	\$296,900,000
Hot Water Plant Modifications	\$0	\$0	\$93,500,000	\$93,500,000
Geoexchange System	\$0	\$0	\$0	\$66,400,000
Potential IRA Credits	\$0	\$0	(\$3,400,000)	(\$27.6M) - (\$138.9M)
Total Cost without IRA	\$29,700,000	\$14,900,000	\$673,000,000	\$742,800,000
Total Cost with IRA Credits	\$29,700,000	\$14,900,000	\$669,600,000	(\$715.2M) - (\$603.9M)

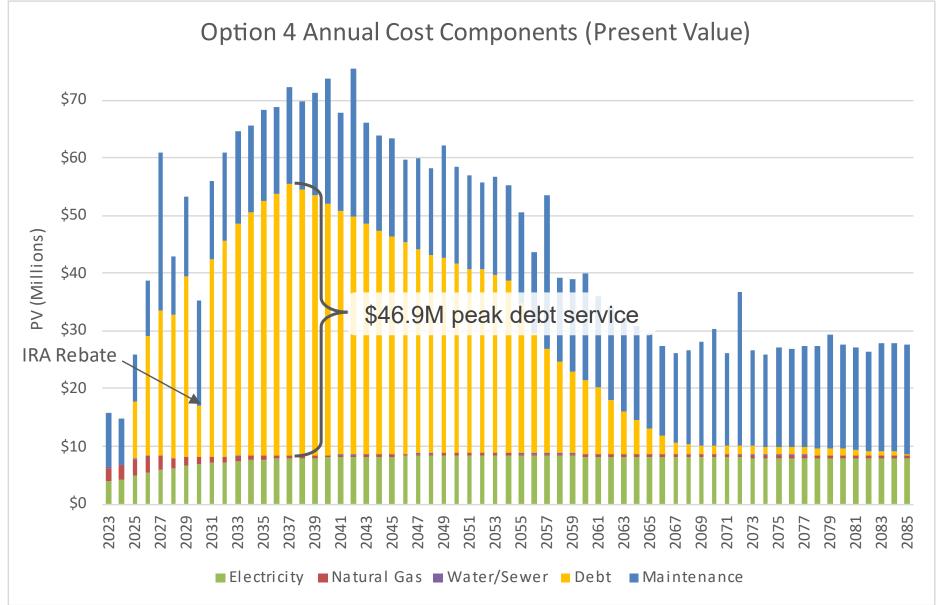
- Option 3 / 4 include:
 - Hot water distribution costs
 - Building conversation costs
 - Heating system (HRC and HRC + Geo-Exchange) costs
 - IRA credits
- Option 2A / 2B include:
 - Electrode steam boiler costs
 - Electrical and other infrastructure costs

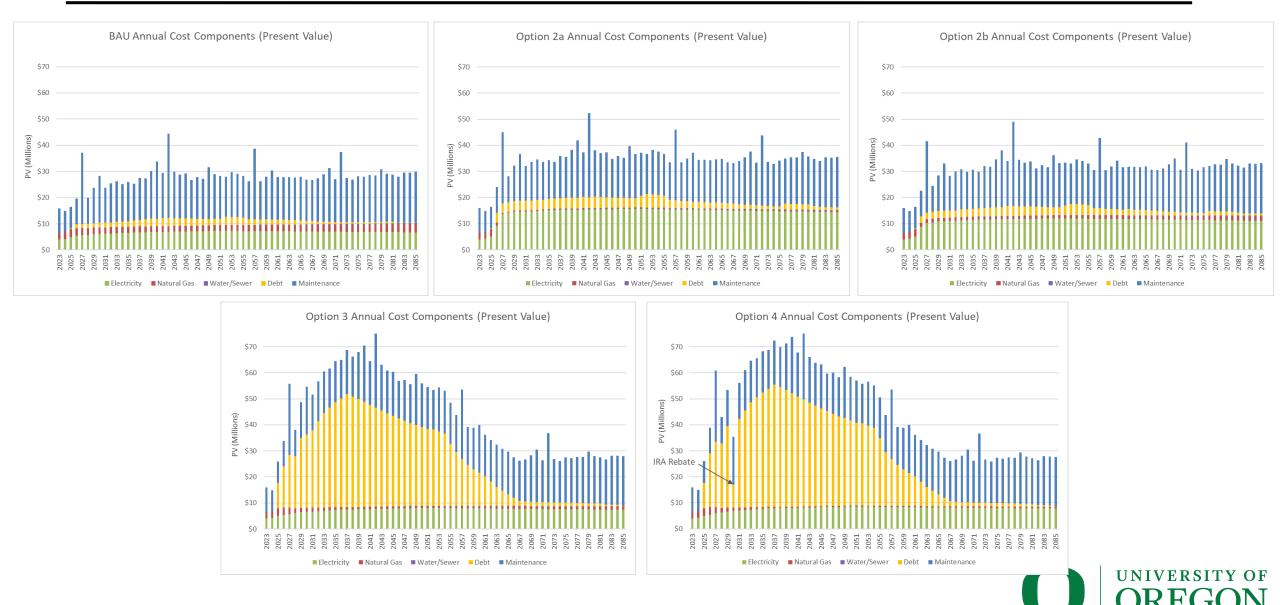


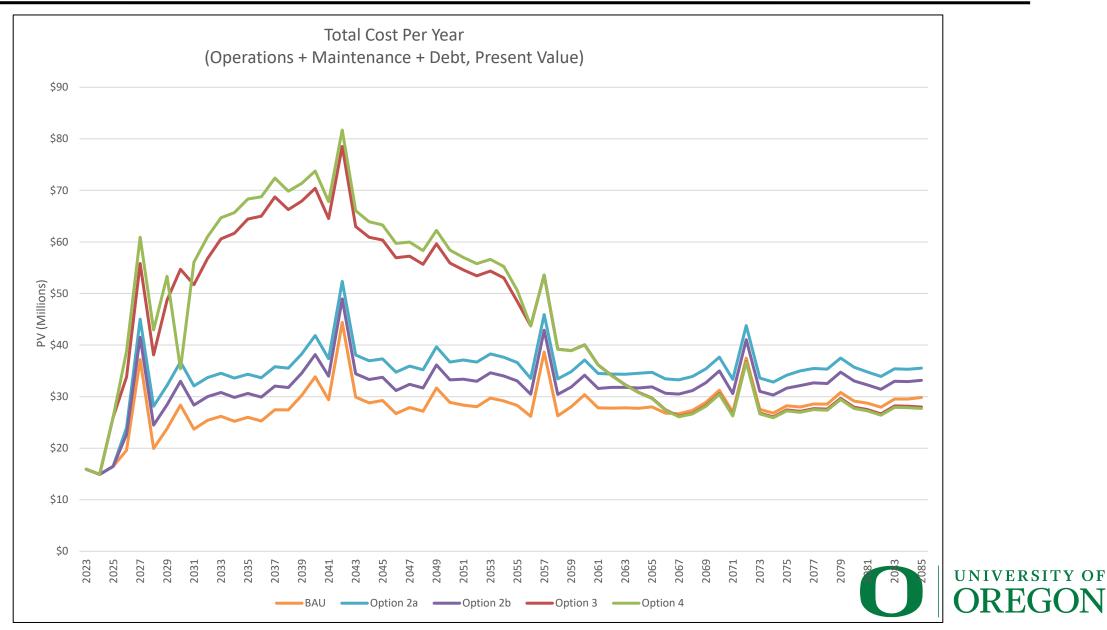



Estimated Costs & Emissions Reductions

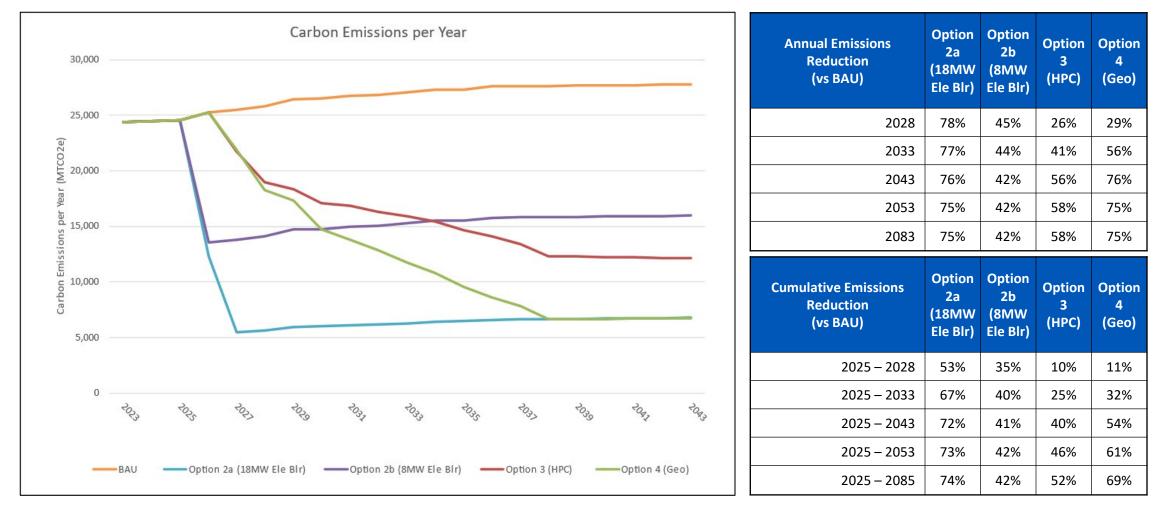








Life Cycle Cost Results – Cost Comparisons



Life Cycle Cost Results – Cost Comparisons

N

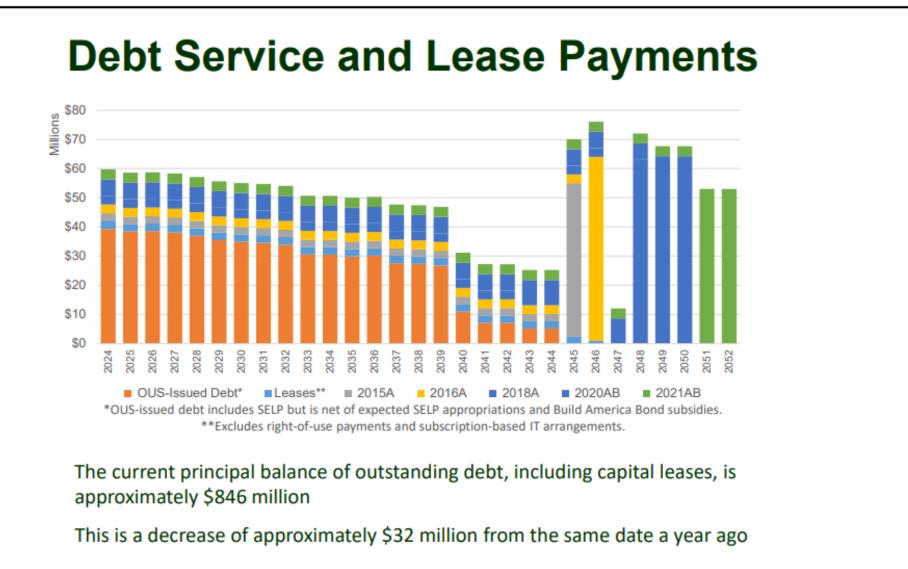
Life Cycle Cost Results – Emissions Reductions

UNIVERSITY OF

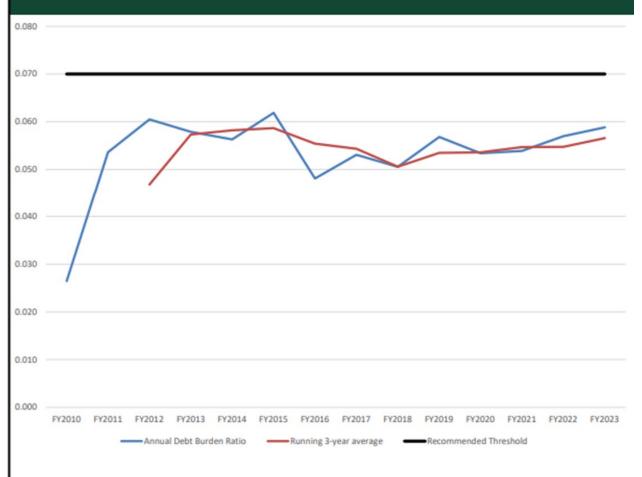
This analysis utilizes the prior 10-year average GHG intensity for EWEB provided electricity, as calculated by Oregon DEQ. This chart does not reflect that during early years of the analysis peaker plants may be used to fulfill new electrical load that generate higher GHG emissions. It also does not incorporate EWEB's 95% decarbonization plan and additional planned decarbonization of the northwest grid.

Total Capital and Operating Costs (NPV) and Cumulative Emissions Reductions

	BAU	BAU (with CPP)	Option 2a (18MW)	Option 2b (8MW)	Option 3	Option 4
Capital Construction Costs (Present Value, Financed)	\$105,000,000	\$105,000,000	\$179,300,000	\$147,300,000	\$1,096,800,000	\$1,174,100,000
IRA Benefit (Present Value)	\$0	\$0	\$0	\$0	-\$3,400,000	-\$27,200,000
Marginal Cost vs BAU	-	\$0	\$74,300,000	\$42,300,000	\$991,800,000	\$1,069,100,000
					1	
Operating and Maintenance Costs (Present Value, Cumulative)	\$1,657,000,000	\$1,699,600,000	\$2,020,800,000	\$1,864,500,000	\$1,599,700,000	\$1,596,900,000
Marginal Cost vs BAU	-	\$42,600,000	\$363,800,000	\$207,500,000	-\$57,300,000	-\$60,100,000
Total Option Cost (Present Value, Financed)	\$1,762,000,000	\$1,804,600,000	\$2,200,100,000	\$2,011,800,000	\$2,696,500,000	\$2,771,000,000
Total Marginal Cost vs BAU	-	\$42,600,000	\$438,100,000	\$249,800,000	\$934,500,000	\$1,009,000,000
2038 Annual Operating + Maint + Debt Service (Present Value)	\$27,500,000	\$28,200,000	\$35,600,000	\$31,800,000	\$66,300,000	\$69,900,000
2085 Annual Operating + Maint + Debt Service (Present Value)	\$29,900,000	\$30,600,000	\$35,600,000	\$33,200,000	\$28,000,000	\$27,700,000
Total Cumulative Emissions (20233-2085, MTCO2e)	1,735,000	822,000	486,000	1,027,000	854,000	578,000
Cumulative Emissions Reduction (2023-2085, MTCO2e)	-	(913,000)	(1,249,000)	(708,000)	(881,000)	(1,157,000)
Cumulative Emissions Reduction (%) (vs BAU)	-	53%	72%	41%	51%	67%
~Cost per MTCO2e Reduction (Present Value)	-	\$47	\$351	\$353	\$1,061	\$872



University Finances


Existing University Debt Service & Lease Payments

University Debt Burden Ratio

Debt Burden Ratio

Major Revenue Sources & Academic Expenditures

School and College	EV 0000	E&G Revenue Source	FY 2023
Education & General Budgets	FY 2023	State Appropriations	\$91M
College of Design	\$26M	Res Undergrad Tuition & Fees	\$85M
College of Arts & Sciences	\$153M	Non-Res Undergrad Tuition & Fees	\$288.M
Honors College	\$3M		φ200.W
Lundquist College of Business	\$36M	Institutionally Funded Remissions	\$69M
College of Education	\$20M	Annual Strategic Investment	\$2M
School of Journalism & Communication	\$16M	Fund	
School of Law	\$26M		
School of Music and Dance	\$14M		

Annual Operating Costs

Annual Costs – First Year in Operation

Annual Costs in 2028	BAU	BAU w/ CPP	Option 2a	Option 2b
2028 Nominal Value	\$23,200,000	\$23,500,000	\$32,700,000	\$28,400,000
Marginal cost vs BAU		\$300,000	\$9,500,000	\$5,200,000
Present Value	\$20,000,000	\$20,300,000	\$28,200,000	\$24,500,000
Marginal cost vs BAU		\$300,000	\$8,200,000	\$4,500,000

- 2027 is anticipated first year in operation for the electric boilers but had large maintenance cost across all options
- Operating annual cost premium for options 2a and 2b due to electricity costs

Annual Costs in 2038	BAU	BAU w/ CPP	Option 3	Option 4
2038 Nominal Value	\$42,800,000	\$43,900,000	\$103,300,000	\$108,800,000
Marginal cost vs BAU		\$1,100,000	\$60,500,000	\$66,000,000
Present Value	\$27,500,000	\$28,200,000	\$66,300,000	\$69,900,000
Marginal cost vs BAU		\$700,000	\$38,800,000	\$42,400,000

- 2038 is first year in full operation for options 3 and 4
- Significant annual cost premium for both options 3 and 4 due to debt service on capital

Key Takeaways

Key Takeaways

• Significant and immediate emissions reductions with Options 2A, 2B but not with Options 3 and 4 (vs BAU)

Annual Emissions Reduction (vs BAU)	Option 2a (18MW Ele Blr)	Option 2b (8MW Ele Blr)	Option 3 (HPC)	Option 4 (Geo)
Annual Emissions Reduction in 2028	78%	45%	26%	29%
Annual Emissions Reduction in 2033	77%	44%	41%	56%
Annual Emissions Reduction in 2043	76%	42%	56%	76%
Annual Emissions Reduction in 2053	75%	42%	58%	75%
Annual Emissions Reduction in 2085	75%	42%	58%	75%

• Significantly larger construction cost and campus disruption associated with Options 3 and 4


Construction Costs	Option 2a (18MW Ele Blr)	Option 2b (8MW Ele Blr)	Option 3 (HPC)	Option 4 (Geo)
Estimated Project Cost (2023 \$)	\$29,700,000	\$14,900,000	\$673,000,000	\$742,800,000
Potential IRA Credit	\$0	\$0	(\$3,400,000)	(\$27.6M) - (\$138.9M)

- Timeline to implementation for Options 2A/2B is much quicker than Options 3 and 4
 - Options 2A / 2B can be completed in 3 to 5 years
 - Options 3 / 4: 12 years to implementation (if no unforeseen conditions / issues exist)
- Annual operating cost increases vary greatly depending on the option

Annual Operating Costs Above BAU (NPV) First Year All Systems Operations	Option 2a (18MW Ele Blr)	Option 2b (8MW Ele Blr)	Option 3 (HPC)	Option 4 (Geo)	UNIVERSITY O
2038 Marginal Cost (NPV)	\$8.1M	\$4.4M	\$38.9M	\$42.4M	

Evaluation Principles

Evaluation Principles

- Reduction of greenhouse gas emissions
- Consideration of technical feasibility risk
- Resiliency of campus heat production to energy markets and natural hazards
- Impact on the campus experience
- Maintaining appropriate fiscal stewardship

Initial Recommendation

Taskforce Assumptions

1. BAU is not acceptable going forward.

2. *The electrical grid is less GHG intensive than the natural gas pipeline* and the taskforce believes is inherently more conducive to GHG reductions over time.

3. *Time is of the essence*, and moving forward with decarbonization efforts which reduce GHG emissions in the short-term is critical to be directionally consistent with the science of climate change. Carbon emissions reductions now are more important that decarbonization efforts later.

4. Regulatory uncertainty around Oregon's CPP will continue for at least the next few years as Oregon DEQ, natural gas providers and the courts work through legal issues. Improvements through *the CPP could be useful adjuncts to whatever plan the UO moves forward with but should not be the basis of our GHG reduction efforts*.

Initial Taskforce Recommendation

 The university should *move forward with Option 2B* as it provides for significant and immediate emissions reductions (up to 45% annually) and is a *partner technology* to Option 3, Option 4 and could be the first step towards Option 2A or to additional/new heating technology as it develops.

Option 2B is not sufficient on its own over the long-term and is a first step.

2. The university should make a *clear and public commitment including timelines* and charging an office, likely the Office of Sustainability *through the Climate Action Plan 3* (to be approved in Spring 2024) to complete the following additional analysis:

- Refinements to and/or next steps associated with Option 2B such as *battery or thermal* storage systems which could further increase system efficiency and reduce campus GHG emissions.
- Technological and regulatory developments that may further alter the GHG emissions and economic realities of the options evaluated by the Taskforce or others unforeseen today that could trigger additional investment.

Discussion of Other Options

Option 2A:

Moving forward with Option 2A fully commits the university to a relatively old technology that is expensive to operate, may become a "stranded asset" and does not use electricity as efficiently as possible. This could be a future option if other technology does not develop but is not advisable at this time.

Option 3 /4:

Moving forward with the steam to hot-water construction project and associated building conversions, does not make sense at this time because;

- Equal or greater GHG reductions are available with Options 2A or 2B
- The long phase-in period (12+ years) will not deliver meaningful emissions reductions for a protracted period of time
- The extremely high cost in both relative and absolute terms when compared to either Options 2A and 2B could not be absorbed without significant budget cuts and negative impacts to our teaching, research and public service mission
- The significant activity/incentives around technological innovation in steam production technology because of the IRA and other decarbonization efforts over the coming years may create other more attractive options.

Questions & Feedback

